Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(5): H1131-H1137, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456848

RESUMO

A significant number of pregnancies occur at advanced maternal age (>35 yr), which is a risk factor for pregnancy complications. Healthy pregnancies require massive hemodynamic adaptations, including an increased blood volume and cardiac output. There is growing evidence that these cardiovascular adaptations are impaired with age, however, little is known about maternal cardiac function with advanced age. We hypothesized that cardiac adaptations to pregnancy are impaired with advanced maternal age. Younger (4 mo; ∼early reproductive maturity in humans) and aged (9 mo; ∼35 yr in humans) pregnant Sprague-Dawley rats were assessed and compared with age-matched nonpregnant controls. Two-dimensional echocardiographic images were obtained (ultrasound biomicroscopy; under anesthesia) on gestational day 19 (term = 22 days) and compared with age-matched nonpregnant rats (n = 7-9/group). Left ventricular structure and function were assessed using short-axis images and transmitral Doppler signals. During systole, left ventricular anterior wall thickness increased with age in the nonpregnant rats, but there was no age-related difference between the pregnant groups. There were no significant pregnancy-associated differences in left ventricular wall thickness. Calculated left ventricular mass increased with age in nonpregnant rats and increased with pregnancy only in young rats. Compared with young pregnant rats, the aortic ejection time of aged pregnant rats was greater and Tei index was lower. Overall, the greater aortic ejection time and lower Tei index with age in pregnant rats suggest mildly altered cardiac adaptations to pregnancy with advanced maternal age, which may contribute to adverse outcomes in advanced maternal age pregnancies.NEW & NOTEWORTHY We demonstrated that even before the age of reproductive senescence, rats show signs of age-related alterations in cardiac structure that suggests increased cardiac work. Our data also demonstrate, using an in vivo echocardiographic approach, that advanced maternal age in a rat model is associated with altered cardiac function and structure relative to younger pregnant controls.


Assuntos
Ecocardiografia , Coração , Gravidez , Feminino , Humanos , Ratos , Animais , Idade Materna , Ratos Sprague-Dawley , Coração/diagnóstico por imagem , Débito Cardíaco
2.
Clin Sci (Lond) ; 138(4): 137-151, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299431

RESUMO

Hypercholesterolemia in pregnancy is a physiological process required for normal fetal development. In contrast, excessive pregnancy-specific hypercholesterolemia increases the risk of complications, such as preeclampsia. However, the underlying mechanisms are unclear. Toll-like receptor 4 (TLR4) is a membrane receptor modulated by high cholesterol levels, leading to endothelial dysfunction; but whether excessive hypercholesterolemia in pregnancy activates TLR4 is not known. We hypothesized that a high cholesterol diet (HCD) during pregnancy increases TLR4 activity in uterine arteries, leading to uterine artery dysfunction. Sprague Dawley rats were fed a control diet (n=12) or HCD (n=12) during pregnancy (gestational day 6-20). Vascular function was assessed in main uterine arteries using wire myography (vasodilation to methacholine and vasoconstriction to phenylephrine; with and without inhibitors for mechanistic pathways) and pressure myography (biomechanical properties). Exposure to a HCD during pregnancy increased maternal blood pressure, induced proteinuria, and reduced the fetal-to-placental weight ratio for both sexes. Excessive hypercholesterolemia in pregnancy also impaired vasodilation to methacholine in uterine arteries, whereby at higher doses, methacholine caused vasoconstriction instead of vasodilation in only the HCD group, which was prevented by inhibition of TLR4 or prostaglandin H synthase 1. Endothelial nitric oxide synthase expression and nitric oxide levels were reduced in HCD compared with control dams. Vasoconstriction to phenylephrine and biomechanical properties were similar between groups. In summary, excessive hypercholesterolemia in pregnancy impairs uterine artery function, with TLR4 activation as a key mechanism. Thus, TLR4 may be a target for therapy development to prevent adverse perinatal outcomes in complicated pregnancies.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Animais , Feminino , Masculino , Gravidez , Ratos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Cloreto de Metacolina/metabolismo , Fenilefrina/farmacologia , Fenilefrina/metabolismo , Placenta , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Artéria Uterina/metabolismo , Vasodilatação/fisiologia
3.
Biosci Rep ; 43(8)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37493195

RESUMO

Advanced maternal age (≥35 years) is a risk factor for poor pregnancy outcomes. Pregnancy requires extensive maternal vascular adaptations, and with age, our blood vessels become stiffer and change in structure (collagen and elastin). However, the effect of advanced maternal age on the structure of human resistance arteries during pregnancy is unknown. As omental resistance arteries contribute to blood pressure regulation, assessing their structure in pregnancy may inform on the causal mechanisms underlying pregnancy complications in women of advanced maternal age. Omental fat biopsies were obtained from younger (<35 years) or advanced maternal age (≥35 years) women during caesarean delivery (n = 7-9/group). Arteries (200-300 µm) were isolated and passive mechanical properties (circumferential stress and strain) assessed with pressure myography. Collagen (Masson's Trichrome) and elastin (Verhoff) were visualized histologically and % positively-stained area was assessed. Median maternal age was 32 years (range 25-34) for younger, and 38 years (range 35-42) for women of advanced maternal age. Circumferential strain was lower in arteries from advanced maternal age versus younger women but circumferential stress was not different. Omental artery collagen levels were similar, while elastin levels were lower with advanced maternal age versus younger pregnancies. The collagen:elastin ratio was greater in arteries from advanced maternal age versus younger women. In conclusion, omental arteries from women of advanced maternal age were less compliant with less elastin compared with arteries of younger controls, which may affect how vascular stressors are tolerated during pregnancy. Understanding how vascular aging affects pregnancy adaptations may contribute to better pregnancy outcomes.


Assuntos
Elastina , Gestantes , Humanos , Feminino , Gravidez , Adulto , Idade Materna , Elastina/farmacologia , Artérias , Resultado da Gravidez , Colágeno
4.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012456

RESUMO

Advanced maternal age (≥35 years) is associated with pregnancy complications. Aging impairs vascular reactivity and increases vascular stiffness. We hypothesized that uterine artery adaptations to pregnancy are impaired with advanced age. Uterine arteries of nonpregnant and pregnant (gestational day 20) young (4 months) and aged (9 months; ~35 years in humans) Sprague-Dawley rats were isolated. Functional (myogenic tone, n = 6−10/group) and mechanical (circumferential stress-strain, n = 10−24/group) properties were assessed using pressure myography and further assessment of elastin and collagen (histology, n = 4−6/group), and matrix metalloproteinase-2 (MMP-2, zymography, n = 6/group). Aged dams had worse pregnancy outcomes, including smaller litters and fetal weights (both p < 0.0001). Only in arteries of pregnant young dams did higher pressures (>100 mmHg) cause forced vasodilation. Across the whole pressure range (4−160 mmHg), myogenic behavior was enhanced in aged vs. young pregnant dams (p = 0.0010). Circumferential stress and strain increased with pregnancy in young and aged dams (p < 0.0001), but strain remained lower in aged vs. young dams (p < 0.05). Arteries from young nonpregnant rats had greater collagen:elastin ratios than the other groups (p < 0.05). In aged rats only, pregnancy increased MMP-2 active capacity. Altered functional and structural vascular adaptations to pregnancy may impair fetal growth and development with advanced maternal age.


Assuntos
Metaloproteinase 2 da Matriz , Artéria Uterina , Animais , Colágeno , Elastina , Feminino , Humanos , Idade Materna , Gravidez , Ratos , Ratos Sprague-Dawley
5.
J Dev Orig Health Dis ; 13(6): 794-799, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35616050

RESUMO

Prenatal hypoxia is a common complication of pregnancy and is associated with detrimental health outcomes, such as impaired cardiac and vascular function, in adult offspring. Exposure to prenatal hypoxia reportedly impacts the reproductive system of female offspring. Whether exposure to prenatal hypoxia influences pregnancy adaptations and outcomes in these female offspring is unknown. We hypothesised that prenatal hypoxia impairs uterine artery adaptations in pregnancies of the adult offspring. Pregnancy outcomes and uterine artery function were assessed in 14-16 weeks old non-pregnant and late pregnant (gestational day 20; term = 22 days) adult female offspring born to rats exposed to prenatal normoxia (21% oxygen) or hypoxia (11% oxygen, between days 15-21 of gestation). Compared with normoxia controls, prenatal hypoxia was associated with pregnant adult offspring having reduced placental weights in their litters, and uterine artery circumferential stress that increased with pregnancy. Overall, prenatal hypoxia adversely, albeit mildly, compromised pregnancies of adult offspring.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Artéria Uterina , Humanos , Ratos , Feminino , Gravidez , Animais , Ratos Sprague-Dawley , Efeitos Tardios da Exposição Pré-Natal/etiologia , Placenta , Hipóxia/complicações , Oxigênio
6.
Front Physiol ; 12: 718568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393831

RESUMO

Advanced maternal age (≥35 years old) increases the risk of pregnancy complications such as preeclampsia and fetal growth restriction. We previously demonstrated vascular dysfunction and abnormal pregnancy outcomes in a rat model of advanced maternal age. However, vascular adaptations to pregnancy in aging were not studied. We hypothesize that advanced maternal age is associated with a more vasoconstrictive phenotype due to reduced nitric oxide (NO) and increased activity of matrix metalloproteinases (MMPs), contributing to impaired vascular adaptations to pregnancy. A rat model of advanced maternal age was used: young (4 months) and aged (9.5 months; ∼35 years in humans) non-pregnant and pregnant rats. On gestational day 20 (term = 22 days; non-pregnant rats were aged-matched), blood pressure and heart rate were measured (tail cuff plethysmography) and vascular function was assessed in mesenteric arteries (wire myography). Endothelium-dependent relaxation to methylcholine (MCh) was assessed in the presence/absence of nitric oxide synthase inhibitor (L-NAME), or inhibitors of endothelium-dependent hyperpolarization (EDH; apamin and TRAM-34). Vasoconstriction responses to big endothelin-1 (bigET-1), in the presence/absence of MMPs-inhibitor (GM6001) or endothelin converting enzyme (ECE-1) inhibitor (CGS35066), in addition, ET-1 responsiveness, were measured. Blood pressure was elevated only in aged non-pregnant rats (p < 0.001) compared to all other groups. MCh responses were not different, however, L-NAME decreased maximum vasodilation in young (p < 0.01) and aged pregnant rats (p < 0.001), and decreased MCh sensitivity in young non-pregnant rats (p < 0.01), without effects in aged non-pregnant rats. EDH contribution to relaxation was similar in young non-pregnant, and aged non-pregnant and pregnant rats, while EDH-mediated relaxation was absent in young pregnant rats (p < 0.001). BigET-1 responses were enhanced in aged non-pregnant (p < 0.01) and pregnant rats (p < 0.05). No significant changes in bigET-1 conversion occurred in the presence of MMP-inhibitor, whereas ECE-1 inhibition reduced bigET-1 constriction in aged rats (p < 0.01). No differences in ET-1 sensitivity were observed. In conclusion, contrary to our hypothesis, reduced blood pressure, and an increased EDH-dependent contribution to vasodilation suggest a compensatory mechanism that may reflect beneficial adaptations in these aged rats that were able to maintain pregnancy. These data increase our understanding of how the vascular adaptive pathways in pregnancy compensate for advanced maternal age.

7.
J Physiol ; 598(24): 5807-5819, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918750

RESUMO

KEY POINTS: Maternal shift work increases the risk of pregnancy complications, although its effects on progeny health after birth are not clear. We evaluated the impact of a simulated shift work protocol for one-third, two-thirds or all of pregnancy on the metabolic health of sheep progeny. Simulated shift work had no effect on growth, body size, body composition or glucose tolerance in pre-pubertal or young adult progeny. Glucose-stimulated insulin secretion was reduced in adult female progeny and insulin sensitivity was increased in adult female singleton progeny. The results of the present study do not support the hypothesis that maternal shift work exposure impairs metabolic health of progeny in altricial species. ABSTRACT: Disrupted maternal circadian rhythms, such as those experienced during shift work, are associated with impaired progeny metabolism in rodents. The effects of disrupted maternal circadian rhythms on progeny metabolism have not been assessed in altricial, non-litter bearing species. We therefore assessed postnatal growth from birth to adulthood, as well as body composition, glucose tolerance, insulin secretion and insulin sensitivity, in pre-pubertal and young adult progeny of sheep exposed to control conditions (CON: 10 males, 10 females) or to a simulated shift work (SSW) protocol for the first one-third (SSW0-7: 11 males, 9 females), the first two-thirds (SSW0-14: 8 males, 11 females) or all (SSW0-21: 8 males, 13 females) of pregnancy. Progeny growth did not differ between maternal treatments. In pre-pubertal progeny (12-14 weeks of age), adiposity, glucose tolerance and insulin secretion during an i.v. glucose tolerance test and insulin sensitivity did not differ between maternal treatments. Similarly, in young adult progeny (12-14 months of age), food intake, adiposity and glucose tolerance did not differ between maternal treatments. At this age, however, insulin secretion in response to a glucose bolus was 30% lower in female progeny in the combined SSW groups compared to control females (P = 0.031), and insulin sensitivity of SSW0-21 singleton females was 236% compared to that of CON singleton female progeny (P = 0.025). At least in this model, maternal SSW does not impair progeny metabolic health, with some evidence of greater insulin action in female young adult progeny.


Assuntos
Resistência à Insulina , Jornada de Trabalho em Turnos , Animais , Glicemia , Feminino , Insulina/metabolismo , Secreção de Insulina , Masculino , Gravidez , Ovinos
8.
J Allergy Clin Immunol ; 144(6): 1703-1713, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31615640

RESUMO

BACKGROUND: Individual susceptibility to allergic diseases is developmentally programmed by early-life exposures. Evidence from preclinical studies suggests that intrauterine growth restriction is protective against later inflammatory responses to allergens. OBJECTIVE: We sought to evaluate whether prenatal growth affects susceptibility to allergy in human subjects. METHODS: We systematically searched for relevant studies in 11 databases, including Web of Science, ProQuest, EMBASE, and PubMed. We included only studies that corrected for gestational age or were restricted to full-term infants to separate effects of fetal growth from those of prematurity. RESULTS: The 42 eligible studies included prospective and retrospective cohort, cross-sectional, and case-control studies. Only 2 studies reported allergic asthma. A birth weight increase of 1 kg was associated with a 44% greater risk of food allergy in children (odds ratio [OR], 1.44; 95% CI, 1.04-1.99; P = .001), a 17% greater risk of ever allergic dermatitis in children (OR, 1.17; 95% CI, 1.04-1.32; P = .008), and a 34% greater risk of ever or current allergic dermatitis in infants up to 2 years of age (OR, 1.34; 95% CI, 1.08-1.68; P = .009). Risks of allergic rhinitis were not associated with birth weight. CONCLUSIONS: The results of these meta-analyses suggest that intrauterine growth restriction protects against allergic diseases in human subjects consistent with preclinical evidence but that effects might differ between allergic diseases. The strongest evidence is available for infancy and early childhood, and additional studies in older children and adults are needed to determine whether the effects of prenatal growth on each allergic disease persist or differ between those with severe and mild phenotypes.


Assuntos
Peso ao Nascer/imunologia , Desenvolvimento Fetal/imunologia , Hipersensibilidade/imunologia , Pré-Escolar , Ensaios Clínicos como Assunto , Feminino , Humanos , Hipersensibilidade/epidemiologia , Hipersensibilidade/etiologia , Lactente , Recém-Nascido , Masculino , Fatores de Risco
9.
Placenta ; 83: 33-36, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31477204

RESUMO

Maternal asthma increases the risk of adverse pregnancy outcomes and may affect fetal growth and placental function by differential effects on the expression of glucocorticoid receptor (GR) isoforms, leading to altered glucocorticoid signalling. Our aim was to examine the effect of maternal asthma on placental GR profiles using a pregnant sheep model of asthma. Nine known GR isoforms were detected. There was a significant increase in the expression of placental GR isoforms that are known to have low trans-activational activity in other species including GR A, GR P and GRγ which may result in a pro-inflammatory environment in the presence of allergic asthma.


Assuntos
Asma/complicações , Asma/metabolismo , Placenta/metabolismo , Complicações na Gravidez/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Animais Recém-Nascidos , Asma/patologia , Modelos Animais de Doenças , Feminino , Placenta/patologia , Gravidez , Complicações na Gravidez/patologia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/metabolismo , Receptores de Glucocorticoides/classificação , Carneiro Doméstico
10.
J Physiol ; 597(16): 4251-4262, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31192454

RESUMO

KEY POINTS: Experimental maternal allergic asthma in sheep provides an experimental model in which to test impacts on progeny. Fetuses from allergic asthmatic ewes had fewer surfactant-producing cells in lungs. A greater proportion of lymphocytes from thymus were CD44 positive in fetuses from allergic asthmatic ewes than in controls. These changes to fetal development might contribute to poor neonatal lung function and increased risk of allergy seen in offspring of pregnancies complicated by asthma. ABSTRACT: Asthma is prevalent in pregnancy and increases the risk of disease in offspring, including neonatal respiratory distress and childhood asthma and allergy, but the mechanisms are not understood. We hypothesized that fetal lung structure and immune phenotype in late gestation fetal sheep would be impaired in our sheep model of maternal allergic asthma during pregnancy. Singleton-bearing ewes were either sensitized before pregnancy to house dust mite (HDM, allergic, n = 7) or were non-allergic (control, n = 5). The ewes were subsequently subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Tissues were collected at 140 ± 1 days gestational age (term, ∼147 days). The density of type II alveolar epithelial cells (surfactant protein C-immunostained) in the lungs was 30% lower in fetuses from allergic ewes than in controls (P < 0.001), but tissue-to-air space ratio and numbers of leucocytes and macrophages were not different between groups. The proportion of CD44+ lymphocytes in the fetal thymus was 3.5-fold higher in fetuses from allergic ewes than in control ewes (P = 0.043). Fewer surfactant-producing type II alveolar epithelial cells may contribute to the increased risk of neonatal respiratory distress in infants of asthmatic mothers, suggesting that interventions to promote lung maturation could improve their neonatal outcomes. If the elevated lymphocyte expression of CD44 persists postnatally, this would confer greater susceptibility to allergic diseases in progeny of asthmatic mothers, consistent with observations in humans. Further experiments are needed to evaluate postnatal phenotypes of progeny and investigate potential interventions.


Assuntos
Asma , Desenvolvimento Fetal/imunologia , Hipersensibilidade , Pulmão/embriologia , Pulmão/imunologia , Ovinos/imunologia , Líquido Amniótico/química , Animais , Anticorpos/sangue , Testes de Provocação Brônquica/métodos , Citocinas/química , Citocinas/metabolismo , Feminino , Hidrocortisona/sangue , Gravidez
11.
Am J Physiol Regul Integr Comp Physiol ; 314(1): R22-R33, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978515

RESUMO

Perinatal exposures are associated with altered risks of childhood allergy. Human studies and our previous work suggest that restricted growth in utero (IUGR) is protective against allergic disease. The mechanisms are not clearly defined, but reduced fetal abundance and altered metabolism of methyl donors are hypothesized as possible underlying mechanisms. Therefore, we examined whether late-gestation maternal dietary methyl donor and cofactor supplementation of the placentally restricted (PR) sheep pregnancy would reverse allergic protection in progeny. Allergic outcomes were compared between progeny from control pregnancies (CON; n = 49), from PR pregnancies without intervention (PR; n = 28), and from PR pregnancies where the dam was fed a methyl donor plus cofactor supplement from day 120 of pregnancy until delivery (PR + Methyl; n = 25). Both PR and PR + Methyl progeny were smaller than CON; supplementation did not alter birth size. PR was protective against cutaneous hypersensitivity responses to ovalbumin (OVA; P < 0.01 in singletons). Cutaneous hypersensitivity responses to OVA in PR + Methyl progeny were intermediate to and not different from the responses of CON and PR sheep. Cutaneous hypersensitivity responses to house dust mites did not differ between treatments. In singleton progeny, upper dermal mast cell density was greater in PR + Methyl than in PR or CON (each P < 0.05). The differences in the cutaneous allergic response were not explained by treatment effects on circulating immune cells or antibodies. Our results suggest that mechanisms underlying in utero programming of allergic susceptibility by IUGR and methyl donor availability may differ and imply that late-gestation methyl donor supplementation may increase allergy risk.


Assuntos
Cobalto/administração & dosagem , Dermatite/prevenção & controle , Suplementos Nutricionais , Retardo do Crescimento Fetal/imunologia , Ácido Fólico/administração & dosagem , Hipersensibilidade/prevenção & controle , Metionina/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal , Enxofre/administração & dosagem , Animais , Metilação de DNA , Dermatite/imunologia , Modelos Animais de Doenças , Feminino , Idade Gestacional , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Ovalbumina/imunologia , Placenta/imunologia , Gravidez , Pyroglyphidae/imunologia , Carneiro Doméstico , Pele/imunologia
12.
JBI Database System Rev Implement Rep ; 14(11): 11-20, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27941506

RESUMO

REVIEW QUESTION/OBJECTIVE: The objective of this systematic review is to synthesize the best available evidence on the relationship between size at birth or fetal growth and postnatal allergy. Specifically, this review aims to assess evidence regarding relationships between absolute birth weight at term, birth weight corrected for gestational age, expressed as relative to population or customized growth data, or fetal growth measures and physician-diagnosed or parent- and self-reported postnatal clinical allergic disease (eczema/atopic dermatitis, hay fever/rhinitis, allergic asthma or anaphylaxis).The specific review question is: what is the association between the absolute birth weight at full-term or birth weight relative to population or customized data and corrected for gestational age or direct measures of fetal growth, and physician-diagnosed or parent- and self-reported clinical allergic disease (eczema/atopic dermatitis, hay fever/rhinitis, allergic asthma or anaphylaxis)?


Assuntos
Peso ao Nascer , Desenvolvimento Fetal , Hipersensibilidade/etiologia , Anafilaxia/etiologia , Peso ao Nascer/fisiologia , Criança , Dermatite Atópica/etiologia , Desenvolvimento Fetal/fisiologia , Idade Gestacional , Humanos , Rinite Alérgica Sazonal/etiologia , Fatores de Risco , Revisões Sistemáticas como Assunto
13.
Int Arch Allergy Immunol ; 169(2): 80-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27044002

RESUMO

BACKGROUND: Around 30-40% of the world's population will experience allergy, the most common and earliest-onset noncommunicable disease. With a steady rise in the incidence of allergic disease over recent decades, up to 18% of children will suffer a respiratory, food or skin allergy before their 18th birthday. There is compelling evidence that the risk of developing allergy is influenced by early life events and particularly in utero exposures. METHODS: A comprehensive literature review was undertaken which outlines prenatal risk factors and potential mechanisms underlying the development of allergy in childhood. RESULTS: Exposures including maternal cigarette smoking, preterm birth and Caesarean delivery are implicated in predisposing infants to the later development of allergy. In contrast, restricted growth in utero, a healthy maternal diet and a larger family size are protective, but the mechanisms here are unclear and require further investigation. CONCLUSION: To ameliorate the allergy pandemic in young children, we must define prenatal mechanisms that alter the programming of the fetal immune system and also identify specific targets for antenatal interventions.


Assuntos
Suscetibilidade a Doenças , Hipersensibilidade/etiologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Metilação de DNA , Dieta , Suplementos Nutricionais , Epigênese Genética , Feminino , Humanos , Imunidade Materno-Adquirida , Recém-Nascido , Exposição Materna/efeitos adversos , Placenta/imunologia , Placenta/metabolismo , Gravidez , Fatores de Risco
14.
J Physiol ; 594(5): 1311-25, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26235954

RESUMO

Maternal asthma during pregnancy adversely affects pregnancy outcomes but identification of the cause/s, and the ability to evaluate interventions, is limited by the lack of an appropriate animal model. We therefore aimed to characterise maternal lung and cardiovascular responses and fetal-placental growth and lung surfactant levels in a sheep model of allergic asthma. Immune and airway functions were studied in singleton-bearing ewes, either sensitised before pregnancy to house dust mite (HDM, allergic, n = 7) or non-allergic (control, n = 5), and subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Maternal lung, fetal and placental phenotypes were characterised at 140 ± 1 days gestational age (term, ∼147 days). The eosinophil influx into lungs was greater after HDM challenge in allergic ewes than after saline challenge in control ewes before mating and in late gestation. Airway resistance increased throughout pregnancy in allergic but not control ewes, consistent with increased airway smooth muscle in allergic ewes. Maternal allergic asthma decreased relative fetal weight (-12%) and altered placental phenotype to a more mature form. Expression of surfactant protein B mRNA was 48% lower in fetuses from allergic ewes than controls, with a similar trend for surfactant protein D. Thus, allergic asthma in pregnant sheep modifies placental phenotype, and inhibits fetal growth and lung development consistent with observations from human pregnancies. Preconceptional allergen sensitisation and repeated airway challenges in pregnant sheep therefore provides an animal model to identify mechanisms of altered fetal development and adverse pregnancy outcomes caused by maternal asthma in pregnancy.


Assuntos
Asma/fisiopatologia , Modelos Animais de Doenças , Complicações na Gravidez/fisiopatologia , Animais , Antígenos de Dermatophagoides/imunologia , Antígenos de Dermatophagoides/toxicidade , Asma/etiologia , Feminino , Gravidez , Complicações na Gravidez/etiologia , Ovinos
15.
Am J Physiol Endocrinol Metab ; 309(6): E589-600, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26219868

RESUMO

Intrauterine growth restriction (IUGR) increases the risk of adult type 2 diabetes (T2D) and obesity. Neonatal exendin-4 treatment can prevent diabetes in the IUGR rat, but whether this will be effective in a species where the pancreas is more mature at birth is unknown. Therefore, we evaluated the effects of neonatal exendin-4 administration after experimental restriction of placental and fetal growth on growth and adult metabolic outcomes in sheep. Body composition, glucose tolerance, and insulin secretion and sensitivity were assessed in singleton-born adult sheep from control (CON; n = 6 females and 4 males) and placentally restricted pregnancies (PR; n = 13 females and 7 males) and in sheep from PR pregnancies that were treated with exendin-4 as neonates (daily sc injections of 1 nmol/kg exendin-4; PR + exendin-4; n = 11 females and 7 males). Placental restriction reduced birth weight (by 29%) and impaired glucose tolerance in the adult but did not affect adult adiposity, insulin secretion, or insulin sensitivity. Neonatal exendin-4 suppressed growth during treatment, followed by delayed catchup growth and unchanged adult adiposity. Neonatal exendin-4 partially restored glucose tolerance in PR progeny but did not affect insulin secretion or sensitivity. Although the effects on glucose tolerance are promising, the lack of effects on adult body composition, insulin secretion, and insulin sensitivity suggest that the neonatal period may be too late to fully reprogram the metabolic consequences of IUGR in species that are more mature at birth than rodents.


Assuntos
Adiposidade/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Retardo do Crescimento Fetal/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina , Insulina/metabolismo , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Animais Recém-Nascidos , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/prevenção & controle , Modelos Animais de Doenças , Endométrio/cirurgia , Exenatida , Feminino , Secreção de Insulina , Gravidez , Distribuição Aleatória , Ovinos
16.
Am J Physiol Regul Integr Comp Physiol ; 306(7): R441-6, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24500430

RESUMO

Prenatal and early childhood exposures are implicated as causes of allergy, but the effects of intrauterine growth restriction on immune function and allergy are poorly defined. We therefore evaluated effects of experimental restriction of fetal growth on immune function and allergic sensitization in adolescent sheep. Immune function (circulating total red and white blood cells, neutrophils, lymphocytes, monocytes, eosinophils, and basophils, and the antibody response to Clostridial vaccination) and responses to house dust mite (HDM) allergen and ovalbumin (OVA) antigen sensitization (specific total Ig, IgG1, and IgE antibodies, and cutaneous hypersensitivity) were investigated in adolescent sheep from placentally restricted (PR, n = 23) and control (n = 40) pregnancies. Increases in circulating HDM-specific IgE (P = 0.007) and OVA-specific IgE (P = 0.038) were greater in PR than control progeny. PR did not alter total Ig, IgG1, or IgM responses to either antigen. PR increased OVA-specific but not HDM-specific IgA responses in females only (P = 0.023). Multiple birth increased Ig responses to OVA in a sex-specific manner. PR decreased the proportion of positive cutaneous hypersensitivity responders to OVA at 24 h (P = 0.030) but had no effect on cutaneous responses to HDM. Acute wheal responses to intradermal histamine correlated positively with birth weight in singletons (P = 0.023). Intrauterine growth restriction may suppress inflammatory responses in skin downstream of IgE induction, without impairment in antibody responses to a nonpolysaccharide vaccine. Discord between cutaneous and IgE responses following sensitization suggests new mechanisms for prenatal allergy programming.


Assuntos
Antígenos , Retardo do Crescimento Fetal/imunologia , Hipersensibilidade Tardia/prevenção & controle , Hipersensibilidade Imediata/prevenção & controle , Imunização , Pele/imunologia , Fatores Etários , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Peso ao Nascer , Clostridium/imunologia , Modelos Animais de Doenças , Feminino , Idade Gestacional , Histamina , Hipersensibilidade Tardia/sangue , Hipersensibilidade Tardia/diagnóstico , Hipersensibilidade Tardia/imunologia , Hipersensibilidade Imediata/sangue , Hipersensibilidade Imediata/diagnóstico , Hipersensibilidade Imediata/imunologia , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Proteínas de Insetos/imunologia , Masculino , Ovalbumina/imunologia , Gravidez , Pyroglyphidae/imunologia , Ovinos , Pele/patologia , Testes Cutâneos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...